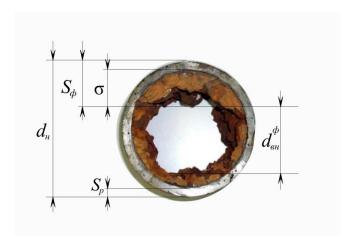
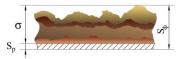
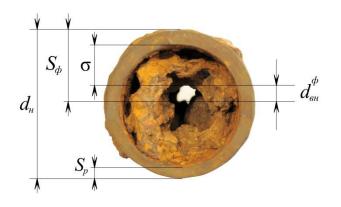
НОВЫЙ ПОДХОД К ГИДРАВЛИЧЕСКОМУ РАСЧЕТУ МЕТАЛЛИЧЕСКИХ ТРУБОПРОВОДОВ ВОДОСНАБЖЕНИЯ С ОТЛОЖЕНИЯМИ НА ИХ ВНУТРЕННИХ СТЕНКАХ


О. А. Продоус, генеральный директор ООО «ИНКО-эксперт», Санкт-Петербург П. П. Якубчик, профессор ФГБОУ ВО ПГУПС Императора Александра I, Санкт-Петербург


Предложена структура таблиц для гидравлического расчета металлических трубопроводов из стали и серого чугуна с внутренними отложениями. Показано, как и с помощью чего определяется фактическая толщина слоя внутренних отложений в трубах. На основе проведения статистического анализа данных по разным регионам страны установлен диапазон значений толщины слоя отложений, по которому составлены таблицы для гидравлического расчета металлических труб. Приведен уточненный вид расчетных формул.

Ключевые слова: трубы из стали и серого чугуна, внутренние отложения, гидравлический расчет, структура формул.


Металлические трубы из стали и серого чугуна в процессе жизненного цикла «Эксплуатация» способны покрываться внутренними отложениями в зависимости от качества транспортируемой к нам питьевой воды.

На рис. 1 представлен фрагмент внутренних отложений в стальных а) и чугунных трубах б).

а) стальные трубы

б) трубы из серого чугуна

Рис. 1. Фрагмент внутренних отложений в стальных и чугунных трубах

$$d_{p} = d_{H} - 2S_{p}, \,\mathrm{M}, \tag{1}$$

где:

 $d_{\scriptscriptstyle \rm H}$ — наружный диаметр труб по стандарту, м;

 s_p — расчетная толщина стенки трубы по стандарту, м;

 s_{ϕ} — фактическая толщина стенки трубы с отложениями, м;

 σ — фактическая толщина слоя внутренних отложений, м;

 d_{p} — расчетный внутренний диаметр труб по ГОСТ, м;

 $d_{s_{\!\scriptscriptstyle H}}^{\,\dot\phi}$ — фактический внутренний диаметр труб с отложениями, м.

Оценка значений толщины фактического слоя внутренних отложений σ , полученных из разных регионов страны, показала, что эти значения зависят от физикохимического состава воды, режима движения потока и возраста водопровода [1].

Исследованиями авторов установлено, что толщина слоя внутренних отложений на стенках металлических труб существенно влияет на гидравлические потери в водопроводах по их длине [2]. Толщина фактического слоя отложений σ приводит к уменьшению внутреннего диаметра труб $d_{\mathfrak{s}\mathfrak{s}}^{\dot{\phi}}$ и увеличению средней скорости V_{ϕ} движения воды.

Следует отметить, что применяемые в настоящее время таблицы для гидравлического расчета водопроводных труб, составленные авторами Ф. А. Шевелевым и А. Ф. Шевелевым [3], учитывают фиксированную толщину слоя внутренних отложений, равную $\sigma=1,0$ мм. Вместе с тем опытом эксплуатации металлических водопроводов подтверждено увеличение толщины слоя фактических внутренних отложений до 35 мм и более. Поэтому использование указанных таблиц для гидравлического расчета неновых металлических труб недопустимо, так как при других значениях σ_{ϕ} , отличных от $\sigma=1,0$ мм, расхождение значений $i_{maбл.}$ может превышать i_{ϕ} в 12 и более раз.

Авторами на основании многочисленных исследований [4, 5] предложены новые зависимости для определения фактических значений гидравлического уклона i_{ϕ} , учитывающие фактическую толщину слоя внутренних отложений на стенках труб. По этим зависимостям составлены новые таблицы для гидравлического расчета водопроводов из неновых (стальных и чугунных) труб [6], структура которых имеет следующий вид:

	d_1				d ₂ ит. д.			
Q, л/с	Толщина фактических отложений σ , мм							
	1,0	5,0	10,0	ит.д.	1,0	5,0	10,0	и т. д.
	V	1000i	V	1000i	V	1000i	V	1000i
	м/с	мм/м	м/с	мм/м	м/с	мм/м	м/с	мм/м

В разработанных таблицах экспертно принято значения σ :

- для стальных водопроводных труб по ГОСТ 3262-75 в диапазоне значений $\sigma = 1 \div 30 \text{ MM};$
- для стальных электросварных труб по ГОСТ 10704-91 в диапазоне значений $\sigma = 1 \div 30$ мм;
- для чугунных труб из серого чугуна по ГОСТ 9583-75 в диапазоне значений $\sigma = 1 \div 30$ мм;

Для новых труб из стали и серого чугуна расчетный внутренний диаметр определяется по формуле (1) (рис.1).

Расчетные значения толщины слоя внутренних отложений приняты с учетом информации, полученной от предприятий из разных регионов страны, эксплуатирующих водопроводные сети из металлических труб.

Новые таблицы составлены по расчетным формулам профессора Ф. А. Шевелева [7], уточненным за счет введения в расчет значений фактической толщины слоя внутренних отложений на стенках труб, изменяющегося в процессе эксплуатации сетей водоснабжения из стали и серого чугуна, измерения которого производятся сертифицированным толщиномером [8].

Для гидравлического расчета водопроводных труб применяется формула:

$$i_{\dot{\phi}} = \lambda \frac{V\dot{\phi}}{d_{e_{u}}^{\phi} \cdot 2q},\tag{2}$$

 i_{ϕ} — фактический гидравлический уклон, мм/м (м/м);

λ — безразмерный коэффициент гидравлического сопротивления;

 $d_{\it en}^{\, \dot \phi}$ — фактический внутренний диаметр труб, м;

 $V\dot{\phi}$ — средняя фактическая скорость движения воды, м/с;

q — ускорение свободного падения, м/ c^2 ;

$$d_{sn}^{\phi} = (dH - 2Sp) - 2 \cdot \sigma, \tag{3}$$

 $\sigma = S_{\varphi} - S_p$ — толщина фактического слоя внутренних отложений, м; S_{φ} — толщина слоя трубы с отложениями, м (рис 1a, б).

С учетом формулы (3) формула (2) приобретает вид:

$$i_{\dot{\phi}} = \lambda \frac{v_{\phi}^{cp}}{[(d_{H} - 2S_{p}) - 2\sigma] * 2g}, \, \text{M/M}, \tag{4}$$

λ для неновых стальных и чугунных труб определяется по формуле [3];

 $V_{\dot{\phi}}^{cp}$ — средняя скорость движения воды с учетом фактической толщины слоя отложений на стенках труб, м/с, определяется по формуле:

$$V_{\dot{\phi}}^{cp} = \frac{4q}{\pi * (d_{e_H}^{\phi})^2}, \text{ M/c},$$

где:

q — заданный (измеренный) расход, m^3/c

Ф. А. Шевелевым на основании экспериментальных данных для неновых стальных и чугунных труб с толщиной слоя фактических внутренних отложений $\sigma = 1,0$ мм, были выведены расчетные формулы, имеющие вид:

при
$$V \!\! \geq \! 1,\! 2$$
 м/с
$$i_{\phi} \! = 0,\! 00107 \frac{v_{\phi}^2}{d_{\phi}^{-1,3}}, \tag{5}$$

при V_{Φ} <1,2 м/с

$$i_{\phi} = 0.000912 \frac{v_{\phi}^2}{d_{\phi}^{1.3}} (1 + \frac{0.867}{v_{\phi}})^{0.3},$$
 (6)

где:

 V_{Φ} — фактическая средняя скорость движения воды, м/с;

 d_{ϕ} — фактический внутренний диаметр труб с внутренними отложениями $\sigma = 1,0$ мм.

Исследования труб с другой толщиной слоя внутренних отложений Ф. А. Шевелевым и другими авторами не проводились.

Авторами разработаны уточненные расчетные зависимости для определения фактического гидравлического уклона i_{ϕ} , учитывающие толщину слоя внутренних отложений на стенках труб:

$$i_{\dot{\phi}} = 0.00107 \frac{v_{\dot{\phi}}^2}{\left[(d_u - 2S_n) - 2\sigma \right]^{1.3}},$$
 (7) при $V \ge 1.2$ м/с;

$$i_{\dot{\phi}} = 0,000912 \frac{V_{\phi}^2}{\left[(d_{\varkappa} - 2S_p) - 2\sigma \right]^{1,3}} + (1 + \frac{0,867}{V_{\dot{\phi}}})^{0,3}, \quad (8) \quad \text{при $V \ge 1.2$ м/c.}$$

По формулам (7) и (8) составлены новые таблицы для гидравлического расчета неновых металлических (стальных и чугунных) труб [6] для всего диапазона диаметров, регламентированных ГОСТ 3262-75, ГОСТ 10704-91 и ГОСТ 9583-75.

Таким образом, новый подход к расчету металлических трубопроводов водоснабжения сводится к использованию при гидравлическом расчете труб расчетных формул, учитывающих значение фактической толщины слоя их внутренних отложений о.

Использование этих таблиц в практических расчетах приводит к высокой точности определения потерь напора в водопроводах из стали и серого чугуна, что позволит принять к установке более эффективные насосные агрегаты, обеспечивающие требуемые значения параметров системы водоснабжения по расходу и напору у потребителя.

Литература

1. Продоус О. А. Зависимость продолжительности использования металлических трубопроводов систем водоснабжения от толщины слоя отложений на внутренней

- поверхности труб // Сборник докладов XV Международной научно-технической конференции «Яковлевские чтения» 2020. Москва: МИСИ-МГСУ, 2020. С. 113–117.
- 2. Продоус О. А., Шипилов А. А., Терехов Л. Д., Якубчик П. П. Анализ погрешностей при гидравлическом расчете металлических трубопроводов водоснабжения с использованием справочных пособий Ф. А. Шевелева // Журнал «Водоочистка. Водоподготовка. Водоснабжение», 2021/2 (158). С. 50–55.
- 3. Шевелев Ф. А., Шевелев А. Ф. Таблицы для гидравлического расчета водопроводных труб. Справочное пособие. 11-е издание дополнение // М.: «Издательский Дом и Бастет». 2016. 428 с.
- 4. Продоус О. А., Терехов Л. Д., Якубчик П. П., Черных А. С. Техническое регулировании значений гидравлических параметров неновых металлических труб для продления периода их использования // Известия Петербургского университета путей сообщения. СПб: ПГУПС, 2021. Т. 18. Вып. 3. С. 421–427.
- 5. Продоус О. А., Шипилов А. А., Якубчик П. П. О необходимости разработки таблиц для гидравлического расчета измененных металлических трубопроводов водоснабжения с разной толщиной слоя внутренних отложений // Журнал «Водоочистка. Водоподготовка. Водоснабжение», 2021/3 (159). С. 48–52.
- 6. Продоус О. А., Шипилов А. А., Якубчик П. П. Таблицы для гидравлического расчета водопроводных труб из стали и серого чугуна с внутренними отложениями. Справочное пособие. 1-е издание // М. Издательство «Перо», 2021. 238 с. ил.
- 7. Шевелев Ф. А. Исследование основных гидравлических закономерностей турбулентности движения в трубах // М.: Госстройиздат; 1953. 208 с.
- 8. Портативный расходомер жидкости Transport PT 878. Руководство по эксплуатации // http://portaflow.ru/wp-content/uploads/2013/04/pt878_manual_rus.pdf