МОДЕЛЬ И ПОЛУЭМПИРИЧЕСКИЙ МЕТОД РАСЧЕТА ПРИСТЕННОЙ ТУРБУЛЕНТНОСТИ

А. П. Рафалович, научный консультант АО «НПО «Тепломаш»

Проектирование инженерных систем для создания определенных климатических условий всегда связано с оптимизацией теплообменной аппаратуры, требующей расчетов гидродинамики, а также массо- и теплообмена. Практически все такие аппараты работают в турбулентных режимах.

Несмотря на наличие в уравнениях турбулентного движения (уравнениях Рейнольдса) дополнительных неизвестных, делающих систему уравнений незамкнутой, расчет турбулентных потоков не представляется неразрешимой задачей благодаря быстродействующим компьютерам и значительному количеству опытных данных. Однако для получения оптимизационных решений, связанных с изменением не только геометрии, но и самой теплообменной поверхности (как, например, при выборе оптимальной шероховатости), каждый новый аппарат, так же как и новая поверхность, должны быть экспериментально проверены, что не только усложняет оптимизацию, но порой делает ее невозможной. Это касается расчета как сопротивления, так и массо- и теплообмена. Поэтому создание обобщенной модели турбулентного течения, применимой для различных поверхностей и контуров обтекаемых тел, остается крайне важной задачей.

Широко известна двуслойная модель Прандтля [1], в которой турбулентный поток разбивается на вязкий подслой и турбулентное ядро. Эта модель дает удовлетворительные результаты для расчета сопротивления и поля скоростей в турбулентном ядре на пластинах и в трубах. Для расчетов массо- и теплообмена Карман предложил трехслойную модель [2], содержащую также переходную область от вязкого подслоя к турбулентному ядру, которая, наряду с вязким подслоем, является крайне важной как при гидродинамических расчетах, так и при расчетах массо- и теплообмена. Модель Кармана позволила расширить область применения аналогии Рейнольдса между переносом импульса и переносом тепла и массы, но заложенные в нее константы не универсальны. Поэтому при решении прикладных задач наибольшее распространение получили модели, основанные на различных допущениях о степенной зависимости турбулентной вязкости от расстояния до стенки. Как пример можно привести модели Ландау [3] и Левича [4].

В основе излагаемой ниже модели лежит следующая гипотеза. Турбулентные пульсации из внешней части пограничного слоя проникают в вязкий подслой. Вязкий

подслой получает дополнительное количество движения от привнесенной этими пульсациями жидкости. Часть вязкого подслоя, в виде вихря, отрывается и расширяется в направлении внешней части погранслоя. Таким образом, в турбулентном погранслое наблюдается два типа возмущений: пульсации из ядра погранслоя, являющиеся причиной срывов части вязкого подслоя, которые, в свою очередь, генерируют другой тип возмущений — пульсации из вязкого подслоя. Последние привносят в ядро погранслоя энергию, связанную с трением на обтекаемой поверхности, и, таким образом, поддерживают турбулентное пульсационное движение во внешней части погранслоя.

Впервые предположение о воздействии на параметры турбулентного погранслоя пульсаций с двумя различными характерными масштабами было сделано Маньковским, Марром и Рафаловичем в главе 4 монографии [5]. К сожалению, в работе [5] авторы, в число которых входит и автор настоящей работы, не сумели довести предложенную модель до расчета поля осредненных скоростей в трубе и на пластине, что повлияло на точность и область применения предложенных расчетных зависимостей.

В настоящей работе приводятся результаты расчета и моделирования турбулентного потока, выполненные на основе предлагаемой модели для труб с гладкой и шероховатой поверхностью, а также для течения при обтекании гладких и шероховатых пластин.

Присвоим пульсациям из ядра потока индекс 1. Эти пульсации имеют внутренний масштаб δ_1 . Пульсации из вязкого подслоя, с индексом 2, имеют внутренний масштаб δ_2 . Внутренним масштабом здесь называется размер такого вихря, в котором кажущаяся турбулентная вязкость равна кинематической вязкости жидкости. Оба типа пульсаций действуют периодично. Часть периода доминируют пульсации с внутренним масштабом δ_1 , которые обретают форму вихрей малого диаметра, приносящих с собой в вязкий подслой вместе с массой жидкости и ее скорость, сопоставимую со скоростью переходного подслоя. Соприкасаясь около стенки с вязким подслоем, вихри с внутренним масштабом δ_1 замедляются до скорости вязкого подслоя. Замедление вихрей с внутренним масштабом δ_1 приводит к повышению давления и, в конечном итоге, к отрыву участка вязкого подслоя с внутренним масштабом δ_2 . Вязкий подслой определяется безразмерной толщиной y_0/d и безразмерным параметром η_0 :

 $\eta_0 = y_0 U^* / v,$ (1)

где у₀ — расстояние от поверхности до верхней границы вязкого подслоя;

d — внутренний диаметр трубы;

v — молекулярная (кинематическая) вязкость;

 $U^* = (\tau_{cr}/\rho)^{1/2} = (f/2)^{1/2} \bar{U}$ — динамическая скорость;

*τ*_{ст} — касательное напряжение на стенке;

ρ — плотность жидкости;

 $f = \frac{2\tau}{\rho \overline{U}^2}$ — фактор трения;

Ū— скорость жидкости на внешней границе погранслоя для пластины или среднерасходная скорость жидкости для трубы. В другой форме равенство (1) можно записать, как

 $\eta_0 = (y_0/d) (f/2)^{1/2} Re.$ (1¹)

Эксперименты с визуализацией погранслоя [6], [7] показали, что при отрыве вязкий подслой теряет примерно половину толщины. Учитывая это, модель, предложенная в настоящей работе, предполагает, что вязкий подслой состоит из двух частей: первая, квазиламинарная часть, прилегающая к стенке, с постоянной при заданном числе Re толщиной $y_0/2$, и вторая часть с переменной по времени толщиной, меняющейся от 0 до δ_{20} . При этом среднестатистическая высота всего вязкого подслоя равняется величине y_0 , т. е. удвоенной толщине пристеночной квазиламинарной части. Мгновенная толщина потока жидкости в вязком подслое периодически меняется. После отрыва из переходного подслоя в вязкий подслой проникают вихри с внутренним масштабом δ_1 . Эти вихри привносят поток импульса к оставшейся, квазиламинарной части подслоя. Вязкий подслой утолщается, пока привнесенная часть не достигнет критической толщины δ_{20} , после чего срывается в виде исходящих из вязкого подслоя вихрей. Оторвавшиеся вихри при движении к внешней части погранслоя расширяются и переходят в пульсации с внутренним масштабом δ_2 .

Одной из важнейших характеристик турбулентного погранслоя является введенное Буссинеском понятие кажущейся турбулентной вязкости v_t. Введение v_t позволило описать касательное напряжение при турбулентном движении аналогично касательному напряжению в ламинарном потоке, как $\frac{\tau}{\rho} = v_t \frac{dU}{dy}$. Легко показать, что из предложенной Прандтлем логарифмической зависимости безразмерной осредненной по времени скорости в ядре турбулентного погранслоя от безразмерного расстояния до стенки, $\varphi = \ln$ $\eta + C$, следует линейная зависимость турбулентной вязкости от расстояния от стенки: $v_{ty=}v_{ty_0} (\frac{y}{y_0})$. Можно также предположить, что в модели, где рассматриваются два типа пульсаций, кажущаяся турбулентная вязкость обоих типов также линейно зависит от расстояния до стенки как в вязком, так и в переходном подслое. Учитывая, что кажущаяся турбулентная вязкость пульсаций внутреннего масштаба δ равна кинематической вязкости жидкости $v_{t\delta} = v$, получим

$$v_{t1} \sim v \left(\frac{y}{\delta_1}\right); v_{t2} \sim v \left(\frac{y}{\delta_2}\right).$$
 (2)

Следуя предположению о периодичном характере пульсаций в верхней части вязкого подслоя и в переходном подслое, выражение для определения касательного напряжения можно представить, как

$$\frac{\tau}{\rho} = (a v_{t1}) \frac{dU_1}{dy} + (b v_{t2}) \frac{dU_2}{dy} = v \left(\frac{a}{\delta_1}\right) y \frac{dU_1}{dy} + v \left(\frac{b}{\delta_2}\right) y \frac{dU_2}{dy}.$$
 (3)

Коэффициенты а и b в выражении (3) отражают периодичность и взаимовлияние пульсаций. Если пульсации действуют по очереди с одинаковым по времени периодом, то a = b = 0.5, и средняя по времени скорость в сечении у определяется как $U = 0.5(U_1 + U_2)$. Если пульсации действуют совместно, $U_1 = U_2$, и турбулентные вязкости в выражении (3) можно просуммировать. Если пульсации часть времени действуют вместе, а часть попеременно, коэффициенты *a* и *b* отражают время попеременного действия пульсаций, а при равенстве скоростей U_1 и U_2 — время их совместного действия.

Из уравнения (3) можно также вывести следующую зависимость для коэффициента переноса импульса или фактора трения f:

f Re ~ $a(\delta_1^{-1}) + b(\delta_2^{-1})$. (4)

Положим, что внутренний масштаб пульсаций в ядре потока δ_1 отвечает соотношению $\delta_1 \sim v^{3/4} \epsilon^{-1/4}$, где ϵ — поток диссипации, т. е. закону ³/4. Тогда безразмерный внутренний масштаб δ_1/d пропорционален Re^{-3/4}. Относительно вихрей, отрывающихся из вязкого подслоя, можно предположить, что безразмерный масштаб δ_2/d пропорционален толщине вязкого подслоя [см. уравнение (1)], т. е. $\delta_2/d \sim f^{-1/2}$ Re⁻¹, и уравнение (4) можно переписать следующим образом:

 $f Re = A_1 f^n Re^{3/4} + B_1 f^{1/2} Re.$ (5)

Из опытных данных и расчетных зависимостей для гладкой трубы были найдены постоянные n = 1/4, $A_1 = 1/6$ и $B_1 = 1/32$. Разделим также обе части уравнения (5) на 2Re $(f/2) = 0.099 (f/2)^{1/4} \text{Re}^{-1/4} + 0.0221 (f/2)^{1/2}$. (5¹)

Если сократить теперь обе части уравнения (5^1) на $(f/2)^{1/2}$, получим более удобное уравнение для коэффициента сопротивления в гладкой трубе:

$$(f/2)^{1/2} = 0.099 (f/2)^{-1/4} \text{Re}^{-1/4} + 0.0221.$$
 (6)

Табл. 1 демонстрирует точность формул (1) и (2) в сравнении с эмпирической формулой Прандтля (по опытным данным Никурадзе): $f = [4 lg (2 Re^* f^{1/2}) - 1.6]^{-2}$.

Таблица 1. Значения фактора трения f при различных числах Re

Число Re	Формула	Закон	Расхождени	
	(6)	сопротивлени	e, %	
		я Прандтля		
4.00E+03	0.00963	0.00998	-3.50%	
1.00E+04	0.00768	0.00772	-0.55%	
3.00E+04	0.00593	0.00587	0.99%	
1.00E+05	0.00454	0.00450	0.93%	
3.00E+05	0.00364	0.00362	0.66%	
1.00E+06	0.002914	0.00291	0.08%	
3.00E+06	0.002433	0.00243	0.10%	
1.00E+07	0.002044	0.00203	0.89%	

Данные табл. 1 показывают, что результаты расчета по уравнению (6) хорошо согласуются с результатами расчетов по эмпирическому уравнению Прандтля в диапазоне Re = $10^4 - 10^7$.

Помимо прочего, необходимо подчеркнуть, что формула Прандтля f = [4 lg (2 Ref^{1/2}) – 1.6]⁻² при очень больших числах Re теряет физический смысл, поскольку предел, к которому стремится фактор трения при Re $\rightarrow \infty$, f \rightarrow 1/Re, означает, что при очень больших числах Re поток импульса растет медленнее, чем квадрат скорости. В отличие от формулы Прандтля, согласно зависимости (6), при устремлении числа Re к бесконечности f \rightarrow f min = 9.77*10⁻⁴, а уравнение (6) принимает вид:

 $(f_{min}/2)^{1/2} = 0.0221.$ (6¹)

Логарифмический характер зависимости безразмерной скорости от безразмерного расстояния до стенки в ядре погранслоя хорошо известен. Для вычисления поля скоростей в промежуточном подслое рассмотрим сначала вязкий подслой. Согласно классической модели Прандтля, Шлихтинга и пр., безразмерный параметр вязкого подслоя η_0 является константой, а средняя безразмерная высота вязкого подслоя (y_0/d) зависит от (f/2)^{-1/2} и числа Re⁻¹. Как упоминалось выше, постоянная часть подслоя, имеющая среднюю толщину $y_0/2$, во многом формируется пульсациями с внутренним масштабом δ_1 , и, при заданном числе Re, эта толщина определяется как

 $(y_0/d)/2 = (A_0/2) (f/2)^{-1/2} \text{Re}^{-1}.$ (7)

В свою очередь, переменная часть вязкого подслоя формирует пульсации масштаба вязкого подслоя δ₂₀, который следует зависимости:

 $(\delta_{20}/d) = B_0 Re^{-1}$. (8)

В равенствах (7), (8) А₀ и В₀ — константы.

Для нахождения связи между y_0 и δ_{20} и, соответственно, между константами A_0 и B_0 обратимся к уравнению (6). Если умножить обе части уравнения (6) на комплекс $B_0(f/2)^{-1/2}$ Re⁻¹, получим равенство:

 $B_0 Re^{-1} = 0.099 B_0 (f/2)^{-3/4} Re^{-5/4} + 0.0221 B_0 (f/2)^{-1/2} Re^{-1}.$ (9)

При Re $\rightarrow \infty$ первым слагаемым в правой части можно пренебречь, откуда: B₀Re⁻¹ = 0.0221 B₀ (f/2)^{-1/2} Re⁻¹. (10)

Заменяя левую часть равенства (10) на (δ_{20} /d) из (8), т. е. на половинную толщину вязкого подслоя, получим следующую связь между константами A_0 и B_0 : $A_0 = 0.0442 B_0$. Из равенств (1¹) и (7) следует $\eta_{y0} = A_0$. Общепринятая величина безразмерного параметра $\eta_{y0} = 5$. Отсюда $A_0 = 5$, $B_0 = 113$.

Принимая, что кажущаяся турбулентная вязкость по мере удаления от стенки линейно возрастает, для турбулентной вязкости пульсаций, генерируемых в вязком подслое v₂₀, можно записать

 $v_{20} = v (y/\delta_{20}) = B_0^{-1} v (y/d) \text{ Re} = 0.00884 v (y/d) \text{ Re}.$ (11)

Как показывает опыт, средняя скорость жидкости в вязком подслое линейно зависит от расстояния до стенки. Формула $\varphi = \eta$, где безразмерный параметр скорости $\varphi = U/U^*$, хорошо работает во всей области вязкого подслоя, включая верхний участок, где турбулентная вязкость внутреннего масштаба каждой из пульсаций имеет вязкость, равную молекулярной кинематической вязкости жидкости и в течение периода формирования, и отрыва переменной области вязкости подслоя, турбулентная вязкость вихрей обоих масштабов попеременно заменяет собой кинетическую вязкость жидкости.

В принципе, формулы (5), (6), где слагаемые определяются масштабами соответствующих пульсаций [см. уравнение (4)], отражают периодичность чередования этих пульсаций. В качестве еще одного, хотя и косвенного, доказательства предлагаемой модели приложим формулу (5) к вычислению теплоотдачи. Поскольку при малых числах Прандтля (Pr) толщина теплового пограничного слоя значительно больше, чем диффузионного, теплоотдача в такой жидкости будет следовать логарифмическому закону ядра потока. Для жидкостей со средним (Pr \approx 1) и, особенно, с большим (Pr >> 1) числом Прандтля, когда весь тепловой пограничный слой находится в вязкой части гидродинамического подслоя, теплоотдача должна следовать уравнению (5¹). Подсчитаем число Nu по уравнению, вытекающему из уравнения (5¹), сохраняя все постоянные:

 $Nu = 0.099 \ f^{\frac{1}{4}} Pr^{\frac{1}{4}} Re^{3/4} + 0.0221 \ f^{1/2} \ Pr^{1/2} Re. \eqno(12)$

Табл. 2 демонстрирует результаты расчета по формуле (12) в сравнении с эмпирическими данными Кутателадзе [8].

	Pr										
Источника	0.7		1		10		100		200		
ИСТОЧНИК	Re										
	10^{4}	10^{6}	10^{4}	10^{6}	10^{4}	10^{6}	10^{4}	10^{6}	10^{4}	10^{6}	
		1200						11		14	
Кутателадзе [8]	37.7	1200	39.5	1440	96.5	5020	198.0	500	238	100	
И мтотононоо [9]	21.1	1150	36.5	1450	80	4800	106.0	12	248	15	
Кутателадзе [о]	51.1		30.5	1430	09	4090	190.0	000	240	300	
Кутателадзе [8]	31.6	1260	36.5	1450	89.5	3640	230.0	9150	304	12 000	
Среднее по											
данным								10		13	
Кутателадзе [8]	33.5	1203	37.5	1447	91.7	4517	208	883	263	800	
По уравнению											
(12)	34	1265	38.3	1455	87.1	3755	215.0	10370	286	14230	

Таблица 2. Число Nu при различных значениях чисел Pr и Re

Данные табл. 2 демонстрируют, что вычисления по уравнению (12) дают очень близкие значения к осредненным значениям эмпирических уравнений, приведенных в монографии [8]. Кроме того, ни один результат из уравнения (12) не выходит из зоны разброса данных [8].

Переходный подслой расположен между верхней границей вязкого подслоя y_0 и нижней границей турбулентного ядра y_1 . В этом подслое также действуют пульсации обоих масштабов: с внутренним масштабом δ_2 , исходящие из вязкого подслоя, и с внутренним масштабом δ_1 , формирующиеся в турбулентном ядре. В вязком подслое, где пульсации периодически сменяют одна другую, нужно рассматривать турбулентную вязкость в каждом из полупериодов. Однако, поскольку, начиная с верхней границы вязкого подслоя, размер вихрей увеличивается, пульсации начинают действовать не только поочередно, но и одновременно, сначала частично, а к верхней границе переходного подслоя пульсаций сливаются в единое целое. Соответственно вязкость, начиная с верхней границы переходного подслоя, выражается следующим образом: $v_{y1} = v_{11} + v_{21}$. (13)

Согласно уравнению (2) турбулентные вязкости на верхней границе переходного подслоя у₁:

 $v_{11} = (y_1/d) v (C_1)^{-1} (f/2)^{-1/4} \text{Re}^{3/4}.$ (14) $v_{21} = v (y_1/\delta_2) = 0.00884 (y_1/d) v \text{Re}.$ (14¹) Подставим вязкости, обусловленные обеими пульсациями, в уравнение (13). Поскольку молекулярная вязкость на границе переходного подслоя и ядра погранслоя много меньше каждой из составляющих турбулентной вязкости, этой вязкостью можно пренебречь.

$$v_{y1} = (y_1/d) \nu (C_1)^{-1} (f/2)^{-1/4} \operatorname{Re}^{3/4} + 0.00884(y_1/d) \nu \operatorname{Re}^1.$$
(15)

Для нахождения двух неизвестных y_1 и C_1 обратимся к уравнению (6), перемножив все слагаемые на К (y_1 /d) v (f/2)^{1/4} Re:

K $(y_1/d) (f/2)^{1/2} v \text{Re} = 0.099 \text{ K} (y_1/d) v (f/2)^{-1/4} \text{Re}^{3/4} + 0.0221 \text{K} (y_1/d) v \text{Re}$. (16)

Сравнивая вторые слагаемые в правой части уравнений (15) и (16), получим **К** = **0.4**, а из сравнения первых слагаемых правой части C₁ = 25.25.

Для нахождения координаты верхней границы переходного подслоя у₁ обратимся опять к модели взаимодействия обоих типов пульсаций. Согласно модели пульсации с внутренним масштабом δ_1 срывают часть вязкого подслоя, генерируя вихри, переходящие в пульсации с внутренним масштабом δ₂ которые, в свою очередь, поддерживают пульсации с внутренним масштабом δ₁. Можно предположить, что переход потока из ламинарного движения в турбулентное связан с возможностью реализации этой цепочки. Отсюда следует, что начало турбулентного движения совпадает с моментом, когда координата у1 оказывается внутри погранслоя. Для гладкой круглой трубы это значит, что при достижении критического числа Рейнольдса (Re_{kp}) соблюдается равенство $y_1 = d/2$. Безразмерный параметр $\eta_{(d/2)} = (f/2)^{1/2} Re/2$. Общепринято, что в трубах переход от ламинарного течения к турбулентному происходит при Re_{кр} в диапазоне между 1800 и 2300. Экспериментальные данные, приведенные в монографии Шлихтинга [1], показывают, что и в гладких, и в шероховатых трубах Re_{кp} ~ 2000, причем в точке перехода коэффициент трения при чисто ламинарном движении равен коэффициенту трения в турбулентном движении. Далее, начиная от $\operatorname{Re}_{\kappa\nu}$, фактор трения *f* увеличивается, достигая при Re ≥ 3500 значений, соответствующих уравнению (6), а также решениям Прандтля, Кармана, Блазиуса и др. Логично предположить, что при Re = Re_{кр} в потоке сначала действуют только пульсации из внешней части погранслоя, к которым при дальнейшем росте числа Рейнольдса Re в диапазоне от Re_{кр} до Re = 3500 добавляются и пульсации из вязкого подслоя. Для нахождения переходного числа Re_{ко} оставим в уравнении (5¹) только первое слагаемое:

 $(f/2) = 0.099 (f/2)^{1/4} \text{Re}_{\text{kp}}^{-1/4}. (5^2)$

Расчет показывает, что равенство между фактором трения по (5²) и фактором трения при ламинарном движении в трубе f =16/Re соблюдается при Re_{кp} = 1950. Подставляя это значение в параметр η_{y1} , получим $\eta_{(d/2)} = 63$.

Поле скоростей в переходном подслое

Как упоминалось выше, в вязком подслое и на нижней границе переходного подслоя оба типа пульсаций действуют попеременно, сменяя друг друга. На верхней границе переходного подслоя и в ядре погранслоя оба типа пульсаций действуют одновременно. Если в течение периода время действия каждой из пульсаций одинаково, то при попеременной смене пульсаций скорость потока определяется по среднему значению

$$U = \frac{U_1 + U_2}{2}.$$
 (17)
$$U_{y1} = \int_{y_0}^{y_1} \frac{\tau}{\rho v_{y_1}} dy.$$
 (17¹)
$$U_{y2} = \int_{y_0}^{y_2} \frac{\tau}{\rho v_{y_2}} dy.$$
 (17²)

Здесь v_{y1} и v_{y2} — турбулентные вязкости вихрей с внутренними масштабами δ_1 и δ_2 . Когда пульсации действуют совместно, скорость определяется из выражения $U_y = \int_{y_1}^y \frac{\tau}{\rho(v_{y1} + v_{y2})} dy.$ (18)

Для построения профиля осредненной скорости нужно знать, какую часть времени занимают пульсации, действующие независимо, и какую часть — пульсации, действующие совместно. Положим, что взаимодействие пульсаций, как и кажущаяся турбулентная вязкость, линейно зависят от координаты *y* и, соответственно, от безразмерной координаты η_y . Тогда доля времени существования профиля скорости, сформированного независимыми пульсациями, составляет $\sigma_{\rm H} = (\eta_{y1} - \eta_y)/(\eta_{y1} - \eta_{y0})$, а доля времени существования профиля скорости, сформированного совместными пульсациями, составляет $\sigma_c = 1 - \sigma_{\rm H} = (\eta_y - \eta_{y0})/(\eta_{y1} - \eta_{y0})$. Выражение для осредненной скорости поперек переходного подслоя принимает вид:

 $U = \sigma_{\rm H} (U_1 + U_2)/2 + \sigma_{\rm c} U.$ (19)

Подстановка вязкостей от обеих пульсаций с учетом указанных выше долей, а также частично объединенных пульсаций в уравнение (19) и последующее интегрирование уравнения (19) от η_{y0} до η_y позволяют получить все поле скорости от стенки до внешней границы погранслоя. Поскольку окончательное выражение содержит слишком много слагаемых, представим это выражение в сокращенной форме:

$$\varphi = \varphi_1 + \varphi_2 = 1.25 (f/2)^{1/2} \text{Re} (C_1/B_1 + C_2/B_2),$$
 (20)
rge

$$\begin{split} B_{1} &= 0.099 \; [\eta_{y1} / (\; \eta_{y1} - \eta_{y0})] \; (f/2)^{-1/4} Re^{3/4} - \eta_{y0} / (\; \eta_{y1} - \eta_{y0}) \; (f/2)^{1/2} \; Re, \quad (20^{1}) \\ B_{2} &= 0.0221 \; [\eta_{y1} / (\; \eta_{y1} - \eta_{y0})] Re - \eta_{y0} / (\; \eta_{y1} - \eta_{y0}) \; (f/2)^{1/2} \; Re, \quad (20^{2}) \end{split}$$

$$\begin{split} C_1 &= \ln[\eta/(B1 + 0.0221/(\eta_{y1} - \eta_{y0}) \text{ Re } \eta] / \{\eta_{y0}/[B1 + 0.0221 \text{ Re}\eta_{y0}/(\eta_{y1} - \eta_{y0})]\}, \end{split} (20^3) \\ C_2 &= \ln(\eta/[B2 + 0.099(f/2)^{-1/4} \text{ Re}^{3/4} \eta/(\eta_{y1} - \eta_{y0})] / \{(\eta_{y0}/[B2 + 0.099(f/2)^{-1/4} \text{ Re}^{3/4} \eta_{y0}/(\eta_{y1} - \eta_{y0})]\}. \end{split}$$

Автор приводит уравнения (20), как инструмент для дальнейшего изучения при оптимизации тепло- и массообмена. На рис. 1 показано поле скоростей турбулентного потока в диапазоне чисел Re от 10^4 до 10^7 , рассчитанное по формуле (20) для переходного подслоя от $\eta_{y0} = 5$ до $\eta_{y1} = 70$. Кривая на рис. 1 хорошо совпадает с кривой, приводимой Шлихтингом в монографии [1]. Видно, что кривые на рис. 1, построенные для различных чисел Re, при приближении к внешней границе переходного слоя несколько отличаются друг от друга, но это отличие крайне невелико: соответствующее среднее стандартное отклонение составляет 1.5%, и максимальное отклонение нигде не превышает 2%. Это означает, что для проведения практических расчетов они могут быть аппроксимированы некоторой универсальной зависимостью вида $\varphi = \varphi(\eta)$, которая может быть сопряжена с универсальным профилем Прандтля для ядра пограничного слоя.

Рис. 1. Поле осредненных скоростей в переходном подслое

Поле скоростей в ядре погранслоя

В режимах развитой турбулентности в трубах ядро включает большую часть пограничного слоя от внешней границы переходного подслоя у₁ до внешней границы погранслоя d/2. Как следует из модели, в этой области оба типа пульсаций сливаются в одно целое, т. е. при расчете поля осредненных скоростей в ядре погранслоя можно пользоваться единой турбулентной вязкостью, рассчитанной как сумма двух компонентов:

$$v_{y} = v_{y\delta 1} + v_{y\delta 2} = (y/\delta_{1})v + (y/\delta_{2})v.$$
 (21)

Подставляя в уравнение (21) значения δ_1 и δ_2 , а также $C_1 = 25.3$, $B_0 = 133 =$

45.25*2.5, для сечения у внутри турбулентного ядра получим

$$v_{y} = (y/d) \nu [(f/2)^{-1/4} \text{Re}^{-3/4}/\text{C}_{1} + \text{Re}/\text{B}_{0}] = 0.4 (y/d) \nu [0.099 (f/2)^{-1/4} \text{Re}^{3/4} + 0.0221 \text{Re}].$$
(22)

Выражение, приведенное в квадратных скобках, может быть заменено на $(f/2)^{1/2}$ Re в соответствии с уравнением (6). Отсюда:

 $v_y = 0.4 (y/d) v (f/2)^{1/2} \text{Re.}$ (23)

Подставляя (23) в уравнение Буссинеска $\tau/\rho = v_t (dU/dy)$, получим

$$U(y) = 2.5 \int_{y_1}^{y} \tau / \left[\mu \left(\frac{f}{2}\right)^{1/2} \text{Re}\right] dy/y, \quad (24)$$

где $\mu = \nu \rho$ — динамическая молекулярная вязкость жидкости.

Заменяя в уравнении (24) скорость U и координату у на безразмерные параметры ф и η, и интегрируя, приходим к уравнению Прантля:

$$\varphi = 2.5 \ln(\eta) + 5.5,$$
 (25)

где ϕ — безразмерный параметр скорости, $\phi = U/U^*$.

Течение в трубах с песочной шероховатостью

Так же как и в гладкой трубе, течение жидкости в трубах с песочной шероховатостью хорошо изучено и описано в работах Никурадзе, Кармана, Прандтля и пр. При этом наибольшее влияние уделено режимам с полным проявлением шероховатости при безразмерном параметре расстояния от стенки $\eta_{\rm m} = ({\rm k}~{\rm U}^*)/\nu > 70$. Многочисленные эксперименты показывают, что при полном проявлении шероховатости, т. е. при значении $\eta_{\rm m} > 70$ фактор трения становится величиной постоянной, не зависящей от числа Re. Относительная шероховатость определяется, как $k_{\rm s} = k/R$, здесь k — высота элементов шероховатости (для песочной шероховатости — размер песчинок), R = d/2 — радиус трубы.

Для профиля скоростей при η_у > η_ш в трубе с песочной шероховатостью по экспериментальным данным Никурадзе было получено уравнение [1]:

 $\Phi = 2.5 \ln(y/k) + 8.5.$ (26)

Уравнение (26) похоже на уравнение (25). Отличаются только выражения под знаком логарифма (yU*/v) в (25) и y/k в (26), и значения постоянных 5.5 в (25) и 8.5 в (26). Карманом [1] была получена формула для коэффициента сопротивления в шероховатой трубе:

 $f = [4*log(R/k) + 3.48]^{-2}$. (27)

Однако формула Прандтля $f^{1/2} = [4lg(2 \text{ Ref}^{1/2}) - 1.6]^{-1}$ для расчета коэффициента сопротивления в гладкой трубе при высоких числах Re не согласуется с выражением (27). Чтобы доказать это, приравняем правые части обеих формул. Положим, что коэффициент k в выражении (31) достаточно мал, а число Re достаточно велико, что позволяет рассматривать шероховатую трубу, как гладкую. Тогда: $4*\log (2 \text{ Re f}^{\frac{1}{2}}) - 1.6 = 4*\log (R/k) + 3.48$, откуда **Re f**^{1/2} = **9.3** (**R**/**k**). Однако, если исходить из общепринятого и экспериментально подтвержденного понятия о том, что полное проявление шероховатости начинается от $\eta_{III} = kU^*/v = 70$, связь между числом Re и параметром шероховатости: **Re f = 280 (R/k**).

Чтобы устранить несоответствие уравнений Прандтля и Кармана, решение должно обеспечить соответствие обоих уравнений в области, где шероховатая труба становится гладкой, т. е. уравнение для расчета трения, учитывающее влияние шероховатости на сопротивление трубы, должно превращаться в уравнение (6), когда значение абсолютной k и относительной $k_s = k/R$ шероховатостей устремляются к 0. Такому условию отвечает, в частности, уравнение (6) для коэффициента трения в гладких трубах:

 $(f/2)^{\frac{1}{2}} = 0.099 (f/2)^{-1/4} \text{ Re}^{-1/4} + 0.0221.$

В этом уравнении первое слагаемое в правой части представляет влияние пульсаций из ядра пограничного слоя, а второе слагаемое описывает пульсации, генерируемые в вязком подслое, и не зависящие от свойств поверхности. Таким образом, для коэффициента трения в шероховатой трубе можно записать:

 $(f/2)^{\frac{1}{2}} = C (f/2)^{-1/4} Re_{\kappa p}^{-1/4} + 0.0221.$ (28)

Здесь С — постоянный коэффициент, определяемый из опытных данных, а $\text{Re}_{\text{кp}}$ — значение числа Re, при котором величина фактора трения для заданной шероховатости становится постоянной. Из опытов Никурадзе можно определить, что фактор трения f становится постоянным при числе $\text{Re}_{\text{кp}}$, отвечающем условию (f/2) (k U^{*})/v = 70, где высота шероховатостей k определяется из коэффициента относительной шероховатости k = $k_s d/2$, и

 $\operatorname{Re}_{\kappa p} = 140 \text{ k}_{\text{s}}^{-1} (f/2)^{-1}.$ (29)

Подставив (29) в (28), получим:

 $(f/2)^{\frac{1}{2}} = C/3.44 k_s^{1/4} + 0.0221.$ (30)

Из опытных данных находим постоянную C = 0.427. Отсюда закон сопротивления для шероховатых труб выражается через число Re

 $(f/2)^{1/2} = 0.427 (f/2)^{-1/4} Re_{\kappa p}^{-1/4} + 0.0221$

или через относительную шероховатость

 $(f/2)^{\frac{1}{2}} = 0.124 k_s^{1/4} + 0.0221.$ (31¹)

Для получения профиля скоростей в трубе с шероховатой поверхностью используем тот же метод, что и для вычисления профиля скорости в гладкой трубе.

Как и для гладкой трубы, принимаем, что кажущаяся турбулентная вязкость по мере удаления от стенки линейно возрастает. Для турбулентной вязкости пульсаций с внутренним масштабом δ₂, определяющих правое слагаемое в правой части уравнения (31), аналогично равенству (14) можно записать:

 $v_{2y} = (y/\delta_2) v = 0.00884 (y/d) v \text{Re}_{\text{kp}}.$ (32)

Для турбулентной вязкости пульсаций с внутренним масштабом δ₁ аналогично гладким трубам имеет место уравнение (13)

 $\delta_1/d = C_1 (f/2)^{1/4} \operatorname{Re}_{\kappa p}^{-3/4},$ (33)

где C₁ — константа.

Турбулентная вязкость пульсаций с внутренним масштабом δ_1 , аналогично турбулентной вязкости пульсаций из вязкого подслоя с внутренним масштабом δ_2 , определяется как $v_{\delta 1} = v$, а турбулентная вязкость в сечении y_1 равна $v_{1y} = (y_1/d) v (C_1)^{-1} (f/2)^{-1/4} \operatorname{Re}_{\kappa p}^{\frac{3}{4}}$. (34)

Представленная здесь модель предполагает, что, как и в гладкой трубе, в вязком и переходном подслоях действуют пульсации обоих масштабов, которые объединяются в ядре турбулентного подслоя. Если в вязком подслое оба типа пульсаций действуют попеременно, то в переходном подслое они сливаются сначала частично, а к верхней границе — полностью. Поэтому в вязком подслое, где пульсации периодически сменяют одна другую, нужно рассматривать вязкость в каждом из полупериодов. Соответственно вязкость определяется следующим образом, начиная с верхней границы переходного подслоя у₁:

 $v_{ty} = v_{1y} + v_{2y}.$ (35)

Подставив в (35) компоненты турбулентной вязкости из (32) и (34), получим: $v_{ty} = 0.4 v (y/d) \operatorname{Re}_{\kappa p} [(2.5/C_1) (f/2)^{-1/4} \operatorname{Re}_{\kappa p}^{-1/4} + 0.0221v].$ (36)

Заменив теперь выражения в прямоугольных скобках на (f/2)^{1/2}, из уравнения (31) получим:

 $v_{ty} = 0.4 v (y/d) \operatorname{Re}_{\kappa p} f^{1/2}$. (37)

Профиль скорости может быть найден из ранее приведенного выражения (18). После соответствующих подстановок (18) принимает вид:

$$\varphi = \frac{U_y}{U^*} = 2.5 \int_{y_1}^y \frac{dy}{y}.$$
 (37)

Если переписать уравнение (38), добавив высоту шероховатостей k, получим общепринятую формулу

 $\varphi = 2.5 \ln(y/k)$ (39)

Как уже указывалось, поскольку в вязком подслое оба типа пульсаций действуют попеременно, полностью сменяя друг друга, скорость потока, как и в гладкой трубе, определяется по среднему значению системой уравнений (17).

Для расчета профиля осредненной скорости в переходном подслое, как и для гладкой поверхности, нужно учитывать долю пульсаций масштабов δ₁ и δ₂, действующих независимо друг от друга, и долю пульсаций, действующих совместно.

Гладкая и шероховатая пластины

Поскольку методика, изложенная в настоящей работе, предполагается универсальной, ограничимся здесь только расчетными зависимостями для вычисления коэффициента трения. Для гладкой пластины:

$$(f/2)^{1/2} = 0.0255 (f/2)^{-1/2} \operatorname{Re}_{x}^{-1/4} + 0.0221.$$

Здесь f = f (x) — локальный коэффициент трения $\text{Re}_x = (\text{Ux})/v$, x — расстояние от рассматриваемого сечения до передней кромки пластины. В диапазоне чисел Re_x от 10^6 до 10^8 расхождение с опытными данными Вигхардта и Шлихтинга [1] не превышает 2%.

Для шероховатой пластины уравнение (40) принимает следующий вид:

$$(f/2)^{1/2} = 0.54 (f/2)^{-1/4} \operatorname{Re}_{x \kappa p}^{-1/4} + 0.0221.$$
 (41)

Используя относительную шероховатость k_s, как отношение высоты шероховатости k к длине x, получим:

$$(f/2)^{1/2} = 0.056 (f/2)^{-1/4} k_s^{1/4} + 0.0221.$$
 (41¹)

Результаты расчетов по обеим формулам (41) и (41¹) хорошо совпадают как между собой, так и с опытными данными, а также с результатами расчета по интерполяционной формуле, приведенной в монографии Шлихтинга [1]: f = [2.87 – 1.58 log(k_s)]^{-2.5}.

Заключение

Сравнение зависимостей (6), (31), (40) и (41) для гладкой и шероховатой труб и для пластины показывает, что все зависимости выглядят подобно: во всех перечисленных уравнениях первые слагаемые в правой части характеризуют пульсации с внутренним масштабом δ₁, генерируемые в ядре турбулентного подслоя. Во всех этих слагаемых содержится число Рейнольдса в степени -1/4, что является следствием потока диссипации

в ядре погранслоя и следует закону ³/4. Второе слагаемое во всех зависимостях константа 0.0221, представляющая влияние пульсаций, генерируемых в вязком подслое. Можно назвать это слагаемое константой пристенной турбулентности. Все это подчеркивает возможность создания единой теории пристенной турбулентности для широкого поля поверхностей и геометрий на основе предлагаемой полуэмпирической модели с универсальными константами.

Автор выражает глубокую благодарность за ценные советы и редактирование к. т. н. М. Реузу и к. т. н. О. Маньковскому.

Литература

- 1. Шлихтинг Г. Теория пограничного слоя. М., Наука, 1974.
- 2. Лойцянский Л. Г. Механика жидкости и газа. М., Наука, 1973.
- Ландау Л. Д., Лифшиц Е. М. Теоретическая физика, т. 2. Гидродинамика. М., Гостехиздат, 1953.
- 4. Левич В. Г., Физико-химическая гидродинамика. М., Физматгиз, 1959.
- 5. Берман Я. А., Маньковский О. Н., Марр Ю. Н., Рафалович А. П. Системы охлаждения компрессорных установок. Л., Машиностроение, 1984.
- 6. Деменок С. Л., Сивуха С. М., Медведев В. В. Визуализация течения жидкости в каналах. Страта, 2015.
- Репник Е. У., Соседко Ю. П. Турбулентный пограничный слой. М., Физматлит, 2007.
- 8. Кутателадзе С. С. Основы теории теплообмена. М., Атомиздат, 1979.